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In recent years spectral analysis has become an increasingly popular
tool for use in the estimation of econometric models. The interest in
spectral analysis stems largely from the desire to have additional
methodologies for estimating economic time series relstionships when
the more traditional time-domain methods are not satisfactory. However,
there has been relatively little discussion on the advisability of using
spectral analysis for such purposes.

In this paper I comment upon the applicability of ipectral analysis
to econometric problems and provide some guidelines as to when spectral
analysis may prove a useful tool for economists. Since knowledge of
spectral analysis generally requires a substantial investment of time,

I first outline its possible uses so that _he economist unfamiliar with
the techniques can better evaluate his potential need. An ocutline of

the types of economic problems particularly susceptible to analysis by
spectral techniques should interest the investigator currently dealing

with those types of problems.

*Any views expresses in this paper are those of the author. They
should not be interpreted as reflecting the views of The Rand Corporation
or the official opinion or policy of any of its govermmental or private
research sponrors. Papers are reproduced by The Rand Corpuration as a
courtesy to members of its staff.




Thic paper is primariiy concerned with the frequency-domsin
applications of spectral analysis and the adviaability of using such
analysis for examining economic time series relationships. That is,

I do not dwell upon the techniques developed by I'annan (1965) for using

spectral estimstes to estimate distributed lag models. These techriques
are really just an alternative method for estimating tiwe-domain param-

eters. One of the major stumbling blocks in the application of spectral
analysis in economics is the interpretation of the fraquency domain.

In Section II I provide a brief description of spectral amalytic
techniques. In Section III theoretical and practical reasons for and
against the use of spectral snalysis in economics are discussed. As
an illustration of the rationale for using spectral analysis in economics,
I discuss three specific examples from the iiterature in Section IV.
Finally, Section V presents the conclusions.

Spectral analysiz is found to be a useful tool for a limited set
of economic hypotheses. The major conceptual problem in the application
of spectral analysis to economics is the economic interpretation of
frequency. Therefore, a major requirement to be satisfied is that there
be a reasonable frequency-domain interpretation of the hypothesis. On
the other hand, a number of practical problems mey seriously limit the
use of spectral analysis in econometrics. The most important of these
are the large data requirements necessary for estimation, the limited
number of variables that can reasonahb.y be included in the model, and
the matter of how to interpret the large number of estimates for any
given model (or alternatively, the lack of summary statistics). Conse-
quently, although spectral analysis may prove to be a useful tool, its

applicability (in the frequency domain) is limited.
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11, DESRIPTION OF SPECTRAL ANAITSIS
Since there are a number of excellent references dealing with the

presentation of spectral mlyais,l my description of spectral tuchniques
will be brief. However, it would de useful at least to summarize the
methodology to put the discussion into the proper perspective.

Spectral analysis is a method by which time scries data are con-
verted into the frequency domain for examinztion. Through the Fouriar
transform it can be shown that any stationary time series can be decom-
posed into a summation of sinusoidal waves of different frequemcics (or
equiv~'2ntly, different periods). Each of these waves is completely

described by its frequency, amplitude, and phase shift. The frequency

is simply the fraction of a cycle that is completed in one period. The

amplitude is the height of the wave. The phase shift is the fraction
of a cycle that the wave is displaced from zero. Therefore, given a

real valued stationary time series xt(t =1,2, ..., T,, vhere x, are

deviations from th: mean, x_may be written:

t
n-1
x = 2 kZ')I Ak cos (21 k/t + cpk) + An cos(N),

where
n = T/2 (suppose (T even),
Ak = amplitude for frequency k, and

P~ phase shift for frequency k.

]‘For example, see Jenkins and Watts (1968), Fishman (1970), among
others.




Yigure 1 demonstrates the decomposition of a continuous signal into
the summation of three different cosine curves. Figure la shows the
continuous signal; Figure 1b shows . Jecomposition. It is clear from
Figure 1b that most of the variance in the observed signal is described
by the cosine with the lowest frequeacy (that is, the longest period).

Expresion (1) may be rewritten:

n-1
) x, = > x.eﬂfhtlt

n=-n
vhere

‘19 =cos 0 + ieinb, 1 =,-1.
On the other hand, the theory of Fourier transforms states that X- nay
be wrf“ten as &n inverse Fouries transform of x,:
n-1
1 o 12Mmt/T

3) X, =3 PN X,

Expressions (2) and (3) indicate that a time series may be viewed
either through the time domain {xt} or through the frequency domain
{xf}. That is, {xt} and { xf} are equivalent; they just represcnt
alternative views of the same data. Although economists are generally
quite familiar with the time Jdowain, many are not familiar with the
frequency domain. Therefore thc meaning ox the frequency domain is
probably worth reiteration. The time domain refers to the description
of data in terms of their values over time. The frequency domain refers
to the same data, but with reference to the collection of sine and cosine

waves that would be required to produce those data.
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(b) Decompasition into three harmonies

Fig.1 — Signal and is decomposition




The functional relationship between xf and £ Zs known as the

spectr:m (or pover spectrum). The spectrum of a time series represents
a decomposition of variance in the frequency domain (versus the time-
dumain decompusition of variance techniques usually used by economists).
In other words, the spectrum measures the relative coatribution of
different fraquency bands to the variance of the time series. Those
frequencies that ccntribute most to the variation in the time series
will have the largest values for the power spectrum; those frequencies
that contribute least to the variation will have the smallest values.
For example, the spectrum of a time series dominated by long-run swings
(for example, trends and long cyclzs) will have most of its power in
the low frequency bands, siance long cycles primarily contribute to the
variance in that series. Alternatively, a time series docinatec by
short-run fluctuations will have a spectrum with most of the power in
the high frequency bands.

Since the "true" spectrum is not observed, it must be estimated.
It can be shown that the spectrum of the autocovariance function for a
time series x, is equivalent to the spectrum of x, itself. However,
using the entire estimated autocovariance function (all T terms) does
not produce a consistent estimator of the spectrum, for the analyst
never leaves the small sample situation. On the other hand, 2 consistent
estimator of the spectrum does result from Fourier transforming a trun-
cated autocovariance function for the first M terms, where M < T. The
estimator can be further improved by averaging the speactrum estimate
for a given frequency with the spectrum estimates for some nearby

frequencies, The weighting scheme for this averaging is known as tle




specural v mdow, or averagiag kernel. Therefore, by Fourier transforming
a truncated autocoiariamce function through a spectral window the analyst
is able to obtain consistent estimates of the spectrum.

The discussion up to this point has dealt with univariate spectral
analysis. Just as two seriss may be studied jointly in the tise domain,

they may be studied joiatly in the frequency domsin by means of cross-

spectial analysis. In cross-spectral analysis the frequencies of one
variable are compared with their counterparts of the other variable.
Therefore, for each estimated frequency, the analyst can examine the
relatiouship between the two variables.

The input %o the cross spectrum is the cross-covariance function
(just as the input to the power spectrum is the autocovariance functiom).

The cross spectrum is the Fourier transform of the cross-covariance

function. Since the croes covariance is not, in general, an even function,
the cross spectrum will generally be complex valued.l In addition to
beiag complex valued, the cross spectrum has no readily apparent inter-
pretation (just as the cross-covariance function has no ready interpreta-
tion). However, three very useful measures do arise from the cross

spectrum and the two sets of power spectra. First, the ccherence

provides a measure of the correlation between the first variable and
the second for each given frequency. The gain measures the relation
between the amplitude of the explanatory variable and the amplitude of i
the cross spectrum for each given frequency. Third, the plase spectrum

measures the delay between the two variables for each given frequency.

lThe powar spectrum is real valued because the autocovariance
function is even (R{(u) = R(-u)).




Many of the functions in the frequency domain have direct analogs
in the ordinary regression (time domain) model. The coherence is
mloputothclzmuuintbmreuionmdel. The gain is much
like the regzession coefficieant. The phasa shift is similar to a lag
operator in the regression socdel, showing the delay between the two
time uriu.l

Finally, sultivariate spectral analysis can be used to examine the
relationship between a dcpendent variable and several explanatory
variables, just as multiple regression analysis allows examination of
the relationship between one dependent variable and several explanatory
variablcs in the time domain. However, the uscfulness of multivariate
spectral analysis in economics is likely to be very limited because of
the extremely large number of paraweters necessary for estimation of the
particular spectra.

In summary, spectral analysis provides a description ¢f time series
variables in the frequency domain. That is, since any statioaary time
series can be ducomposed into a collection of sine and cosine waves of

different frequencies (via the Fourier transform), that time series can

be examined across frequencies, not just across time.

ISo‘e care is needed in interpreting the phase shift in the time
domain, as shown by Hause (1971). The phase shift is analogous to a
lag operator. Yet one cannot directly translate puxe delay in the
frequency domain into distributed lag wodels. See Hause for further
explanation.

PO L v P Zat  Sotkantan




Iii. SPECIRAL AMLYSIS IN XCOWMICS

With the aumsrous methods for inwestigating the relationships
betwoen economic variables in the time dcasin, why should one wish
to use spectral asmalysis? It is the thesis of this paper that spectral
aaslysis it uceful in some instances when time-domain technigues do not
prove adequate. Csrtain typ~s of hypotheses may be better examined in
the frequency domain than in the time domiin. The special characteris-
tics that describe these hypotheses are discussed below. The practical
difficclties that limit the usefulness of spectral analysis ave also
discuseed.

SGIMERAL COMNELITS

It has been suggasted thut one area where spectral analysis might
be useful in economics is in the estimation of distributed lag models
when the analyst has little or no prior irformation as to the shape of
the distributed lag cr even the number of terms to be included in the
estimation. This problem can be troublesome in the time domain because
of the multicollinearity between the lagged variables. When additional
lags are introduced into a least squares estimation, the estimates for
the previously estimated coofficients change -- often markedly. That
iz, the estimate for any one coefficient depends partly upon the number
of terms includes I'( the regression.

Spectral analysis bas been proposed as a method for avoiding this
problem, since it does not impose prior restrictions on the model --
the data is said "to speak for itself."” However, aithough the phase
spectrum may be useful for iundicating the direction of leads and lags,

Hause (1971) nctes that it is not appropricte to view the phase spectrum




in the framework of a distributed lag model. The phase represents
puxe delay in the frequency domsin, not a distributed lag. Therefore, tf
spectral analysis may not be useful in itself for the estimation of ’

distributed lag models. On the other bhaud, it may be useful for

ideatifying general leads and lags. p
An alternative method for estimating distributed lags using

spectral z2nalysis is suggested by Hannan (1965). The spectral estimates

O

are converted back intc the time domain so that successive coefficients
are estimated independently of cne another. is technique seems
promising, but this independence of the estimates comes at the cost of
possibly greater variance. Even so, Hannan's technique may be the besz f
way out of a troublesome problem. Hanr@n's technique is not dealt with |
in this paper because, as noted in the introduction, this pager is
concerned with frequency-domain applications of spectral analysis.
Hannan's technique represents an alternative way of estimating the
time-domain parameters and, therefore, should be considered in that
framework.

Perhaps the greatest conceptual difficulty faced by economists in

the application of spectral aralyeis is working in the frequency domain
rather than in the time domain. Most economic hypotheses arxe given in
terms of time, not frequency. It could be argued that virtually no
ecotomic hypotheses are given in terms of frequency. However, some
cconom? s hypotheses are given in temms of separate components, where

vach couwponent is expected to vary predictably over some regular period

of time; hence, these types of hypotheses may have some meaniig in the :

frequency domain. For example, consider the model in which the time




series is postulated to consist of trend, cyclical, seasonal, aad randc<
components. The trend component is expected to vary only over long
periods of time; the cyclical component is expected to vary somewhat
predictably over the course of a business cycle; the seasonal compornent
is expected to vary predictably cver the course of a year; and the random
component has no predictable behavior. Although models of this sort are
given in terms of time periods, they may also be thought of in frequency
terms.

Again, because economic hypotheses are seldom thought of in fre-
quency terms the application of spectral analysis in economics has been
limited. It could probably be argued that not only are most economic
hypotheses not given in frequency terms but also that it is not even
appropriate to think of most eronomic hypotheses in terms of frequency.
Indeed, it could be further argued that it is not even appropriate to
think of component models like the one described above in the frequency
domain, for frequency-domain analysis imposes very restrictive conditions
on the meaning of frequency. That is, spectral analysis views frequencies
in terms of a narrow frequency band tha: describes a set of consine waves.
Economists seldom attach such a precise meaning to the components of a
model, with the possible exception of the seasonal component, which is
expected to adhere to a strict yearly cycie.l
The above comments seem to imply that spectral analysis is never

applicable to economics, but that was not internded, for it will be argued

1
It is difficult to argue for a precise periodic interpretation even

for the seasonal component since there are leap jears, different numbers of
days per month, and holidays. It is partly for this reason that spectral
analysie is far more useful than periodogram analysis, for the spectrum

is actually an average of nearby frequency bands.




below that spectral analysis may actually be the most appropriate f:00l
to use in the estimation and testing of some types of economic hypotheses.
Instead, these comments actually apply strictly only to harmonic (or
periodogram) analysis, as used about the turn of the century.1 Since
spectral analysis provides a measure of the average contribution to
variation of a frequency band (rather than one single frequency),
spertral analysis has more meaning in economic,; than strict harmor
analysis. However, the investigator must still keep in mind that the
frequency domain will often have no real meaning for an ecomomic hypoth-
esis. Therefore, the distinction between the tim: domain and the fre-
quency Jdmmain must be clear. This does aot oreclude thinking of fre-
quencies s the.r period counterparts. In fact, in most cases it is
probably uscful for econonists to think of cycle lengths, rather than
the frequencies correspouding to those ~ycles. Again, chis is laigely

because most economic hypotheses are stiited in terms of time.

CRITERIA FOR THE USE NF SPECTRAL ANALYSIS IN ECONOMICS

The initial criterion that an economic hypothesis must satisfy for
spectral analysis to be of wuch use is that it have some plsusible inter-
pretation in the frequency domain. Since the spectral resuits must
ultimately be interpreted in the framework of economics, it is essential
that the hypothesis have some meaning; in the frequency domain.

Hypotheses that are amenable to spectral analysis fall into two
broad classes: (J) those that ave perhaps best stated in the frequency

domain, and (2) those that are stated in the frequency domain to take

lsee Fishoan (1970).




adventage of specisl properties of tie spectral estimato:s. The first
clasi;; of hypotheses consists of those types of models in which it is

expected that the variables in the model have a reasonably well-defined
periodic nature and that the variables are related to one another in a

periodic sense. For example, suppose one wanted to test whether seasonal

fluctuations in the demand for money produce seasonal fluctuations in
interest rates. This class of hypotheses defines relationships between
variables in a periodic sense and attempts to identify the parameters
of the relationships.

it would be expacted that the first class . f hypotheses is fairly
small. On the other hand, there may be a significsut number of hypoth-
eses that, although best stated in the time domain, are more susceptible
to estimation or testing in the frequency domain. To undezstand wby it

might be preferable to use the frequency domain when the hypothesis

itself is best stated in the time domain, one must keep in mind that
the time domain (for example, the regression model) averages the rela-
tionships between variables over all frequencies. That is, the regres-
sion coefficiont represents fhe effects among variables as an average
of the effects over all frequencies. This can be seen by reviewing
exprassion (3) in the previous section.

In most cases, the fact that time-domain descriptioas of the data
are averages across frequencies presents no real problems. However,
if the investigator is interested in a hypothesis positing different
relationships for different parts of the spectrum, then spectral
an:lysis -- in the frequency domain -- may prove to be a morc useful

tool. Since time-domain analysis averages the relationship across all
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frequencies, the investigator mey not be able to separate differing
behavior across different frequencies by ti~a-domsin techniques. On
the other hand, spectral analysis permits explicit examination across
frequeacies.

Zven if the analyst expects different behavior across different
frequencies, averaging across frequency bands may not cause serious
problems since most economic veriables are dominated by a partvicular
subset of frequencies. In fact, a majority of economic time series
—z~iables probably have most of their variation explained by the low
frequency end of the spectrum -- that is, they are dominated by rela-
tively long-run changes. Therefore, the behavior in the other parts
of the spectrum has little effect on the total variation in the time
series.

The above statement should be interpreted with some care. If,
in fact, the hypothesis indicates differing behavior acvoss diffarant
frequencies aud if the time-domain model does not account for the
differing behavior, then the time-domain model will misspecify ard the
coefficients will not be consistently estimnted.l The effects of such
a time-series estimation are perhaps most easily viewed through the
errors-in-the-variables (EV) model. The analog to the "true" variable
in the EV model for the frequency domain may be taken to be the set of
frequencies that corresponds to the besic hypothesis (the "primary"
frequencies). The fact that other frequencies are not expected to behave

in the same manner corresponds to the "errors" in the EV model. Therefore,

1An example of this problem is considered in the next sectionm.




the smaller the amount of variance explained by these other frequencies,
the soaller are the errors in the EV model; the smaller the amovmt of
variance explained by these othier frequencies, the less serious it will
be to estinnée the model in the time-domain even if the time-domein
model does not account for differing behavior across different frequencies.
Of course, if the time-domain model does account for the differing behavior
across frequencies, then consistent time-domain estimators will tenult.l
These cosments imply that the usefulness of spectrcl analysis in
economics is largely dependent upon (1) the plausibiliity of a frequency-
domain intexpretation for the model, (2) the consistency of behavior
across frequencies, and (3) the amount of variance explained by the

primary frequencies relative to the other frequencies.

PRACTICAL LIMITATIONS TO THE USE OF SPECTRAL ANALYSIS

In addition to the theoretical rationale for and against the use
of spectral analysis in economics, one must also consider the practical
limitations. Three axe considered here: (1) the large amount of data
required, (2) the interpretation of the phase angle, and (3) the lack

of summary statistics.

Generally speaking, spectral analysis requires large amounts of .
data. The reason for the large amounts of data is directly related to
the resolution often required in economics. The resolution of the ;
spactral estimates is a function of the truncation point M: the larger

M is, the finer the resolution. On the other hand, as M increases

lThat is, if the time-domain model is specified correctly, then one
need not go to the frequency domain for estimation. An example of this
type of problem is the permanent income hypothesis examined in the next
section.
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relative to the total sample size, ‘he variance of the estimutor in-
creases. Therefore, some compromise must be maie between resolution
acd variance. For a spectrum that is expected to contain narrow peaks
or troughs, a smll frequency bandwidth (lurge M) is needed to resolve
the spectrum adequately. For a spectruw: that is relatively flat, a
much broader bandwidth may be choseu (smaller M).

This issue may be approachei from another point of view. For the
most commonly used spectral windows, the bias of the spectral estimator
is a function of the second derivative of the spectrum1 such that the
bias is large when the absolute value of the second derivative is large
(the size of the second derivative determines the sign of the bias).
For a spectrum with narrow pecks or troughs -- hence, a nonneglible
second derivative -- the bias will be greater than for a relatively
flat spectrum. Therefore, in order to avoid serious bias, a narrower
bandvidth must be chosen.

The problem of resolution enters in a special way for economic
studiea. As noted earlier, it is often useful to think of the spectrum
in economics not in terms of frequencies, but in terms of period lengths
corresponding to frequencies. It is often the longer periods (lower
frequencies) that are of special interest to economists. Although the
spectrum is estimated at M + 1 frequencies (zero frequency plus the
next M frequencies) equidistant from one another, the corresponding

reviods are not equidistant from one another. As an example, fcr the

frequencies

1See Jenkins and Watts (1968), p. 247.
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£ ={o0, .1, .2, .3, .4, .5},
the corresponding periods are
per. = {=, 10, S, 3.3, 2.5, 2}.

Therefore, to obtain the desirad resolution for the longer frequencies,
M will cften have to be large; hence, the variance of the estimator will
be large (a result of the large M).

The above discussion points to one very important reason why spectral
analysis has not been used more extensively. Since oae must often esti-
mate a large number of frequencies to obtain the desired resolution,
many date observatiors are needed. Otherwise, the variances of the
spectral estimates will be so large as to preclude any coafidence in
them. For example, suppose data are available for 96 months and it is
determined that M = 48 provides the desired resolution. Such an esti-
mation, using the Parzen spectral window, produces only about seven
degrees of freedom, The data problem becomes much worse when ore
attempts a multivariate spectral estimation.

The interpretation of the phase angle and associated leads and lags
is a problem often ignored in studies using spectral analysis. The
problem is that the phase angle is unique only in the range 0 to 21

(or equivalently, ~Tf to +TT).1 That is, any angle ¢', where

lAct:ually, unless the analyst has prior information as to whether

the two series are positively or nepatively correlated, the phase angle
is unique only in the range 0 to T (or -T/2 to + 1/2).




@' =px 2Tk, kany integer,

will satisfy the definition of the phase augle. For example, a2 phase angle

of 0.5 for a period of eight months could be interpreted as series x leading
y by two months, or ten months, or even lagging y by six months. The lack

of information about k causes the difficulty. Consequently, prior information
must be included in the model.

A third problem that can cause difficulties in interpreting the spectral
estimates in terms of ar economic hypothesis is the lack of summary statistics.
For example, suppose th: xelationship between x and y is estimated by cross-
spectra. techniques for 50 frequencies. Then the analyst must interpret the
wmeaning of 50 points on the coherency spectrum, 50 points on the phase spectrum,
and 50 points on the gain spectrum. He will be almost overwhelmed by estimates.
Very often this will not cause lorge problems in cross-spectral analysis since
he will be interested in only one part of the spectium. However, this problem
can become acute in multivariate spectral analysis since there are partial
coherency spectra, a full coherence spectrum, partial phase spectra, and partial
gain spectra. Therefore, although spectral analysis has the advantage of
decomposing a time series into its frequency components, this decomposition
has its drawbacks, for there are then no summary measures to describe the
relationship.

From the discussion on the amount of data necessary for spectral esti-
mation and the lack of summary statistics, it is clear that spectral analysis
iz limited in a practical sense to univariate and bivariate analyses most
of the time. Occasionally, trivariate analysis may be used. Therefore,
spectral analysis is precluded from many economics hypotheses just on the

basis of the number of variables in the model.

P




IV, TERFE EXAMPLES OF THE USEFUINESS OF SFECTRAL ANALYSIS

An important consideration in the application of spectral anzlysis
to economics is whether or not the hypothesis can be reasonably stated
in the frequency domsin. One of the best examples of a hypothesis
falling into this category i: given by Scully (1971). Ia fact, Scully's
hypothesis is probably much better stated in the frequency domain than
in the time domain. Briefly, he attempted to examine the relationship
between general business activity and strike activity. The hypothesis
proposed by others was that strike activity should be directly related
to, and a result of, general business activity. When business activity
is high, there should be a larger number of work stoppages; when business
activity is low, there should be few work stouppages.

This hypothesis has a very natural interpretation in the frequency
domain, largely because general business activity is presumed to behave
in a cyclical fashion. Scully's results point even further to the
appropriateaess of the frequency-domain statement of the modei. He
finds, as expected, that most of the variation in general business
activity is explained by the lower frequency bands, consistent with
the hypothesis that general business activity can be largely explained
by long-run and cyclical components. On the other hand, he finds the
somewhat surprising result that strike activity is largely explained
by much shorter cycles -- on the order of 12 months. Therefore, the
initial hypothesis that strike activity is a result of general business
activity is refuted by this large discrepancy between the power spectra
of the two time series. His results are further enhanced by the low

coherence between the two series.
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Thersfore, spectral amalysis represerts the logical way to proceed
to estimete Scully's hypothesis. However, sometimes one does not nave
such s natural frequency-domain hypotixsis, even though it might best
be examined in the frequency domain. That iz, sometimes it is necessary
to reformulate the hypothesis in the frequency damsin although the
hypothesis is logically stated in the time domain. An example of this
is given by Cooper (1971 and 1972). Cooper's hypothesis represents 2
case where differ_ ng behavicr is expected a priori across different
frequencies.

Cooper exmmines the relationship between the money svprly and
stock returns. Through the combination of two different hypothesis --
the efficient capital markets model and the quantity theory of money --
it is expected that stock returns will lead the money supnly in the
longer run but will lag the money supply in the short run. That is,
short-run deviations in money supply changes from the long-run trends
and cycles will lead stock returns, and the long-run trends and cycles
in money supply changes will lag stock returns. In addition, the
combination of thesz two theories predicts that the relationsha,
between money supply changes and stock returns is much stronger for
the longer-run trends than for short-run deviations. These problems
are further compounded by the fact t¢hat stock returns are expected to
have a flat power spectrum -- that is, each frequency band contributes
equally to the variance in the series. Therefore, since time-domain
procedures average all frequency bands, one would cxpect to make a
serious underestimate of the importance of the long-term relationship

and possibly bias the coefficient estimates. This presents the extreme




case of errors in the warisbles, for the wmount of wariance explaimed by

the primary frequeancies is no larger than the variance explained by
the other wm.

Time series regression analysis bears out the above prediciioms.
Regressions for mouthly data show returms leading money by roughly two
montkis, thus indicating the daminance of the lomger-run hypothesis.
However, the ‘2 for monthly data is on the order of 0.05. On the other
hand, regressions for anaual dats show no lead or lag and an ‘2 of more
than 0.5. Therefore, the regression model does not permit adequate
assessment of the hypothesis. ihe spectral estimation reveals quite
a bit more. The coherence between money and returns was high for the
lower one-sixth of the spectrm (on the other ¢£ 0.5 to 0.7) and quite
low elsewhere, indicating the strength of the relationship for the low
frequency bands. The phase shift indicates that money lags returns for
the lower frequencies (by approximately one to three months) and leads
for the higher frequencies (although the lead in the higher frequzncies
is subject to question because of the low coherence). Finally, although
the regression coefficient rfor money is about 2.0, the gain measure for
the lower frequencies is between 3.0 and 5.0, indicating the bias that
may have occurred in the regression model.

The reason spectral analysis performs better than regression
analysis in this case is a result of (1) the expected differing behavior
acrose frequencies and (2) the flat spectrium for returns (the portions
of the spectrum wherc there is expected to be little relation are

averaged equally in the tims domain representation).

[~
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The third hypothesis illustrates how errors in the variables affect
the tims-domain represeatatiss acd how thase might be interpreted in the
frequency domain. Friedmsa's (1957) permsnent income hypothesis indicates
that income and consumption mey each be decomposed into permanent and tran-
sitory components. Permameat coasumption is expected to be a functiom of
permanent income; tramnsitory imcome snd consumption are assumed to be un-
related. Therefore, a model relating measured income to measured consumption
is subject to e ~crs in the wariables. The frequency-domsin interpretation
of this model would have the loager-run components of income and consumption
related (corresponding to the “permanent” parts of the measured variables)
and the shorter-run compomeats uarelated. Since there are errors in the
variables, one would expect that the marginal propensity to consume would
be underestimated using ordimary regression techniques on the measured
variables. Therefore, spectral analysis may present an attractive alter-
native for at lecast testing the validity of the hypothesis. If the co-
herence and gain are constant across frequencies, then one would reject the
permanent income hypothesis (see Fishman [1970]). Alternatively, if the
investigator can specify the model in the time domain (for example, suppose
that "permanent income™ is a geometrically declining weighted average of
past walues of measured income), then time domain techniques are useful.
However, cpectral analysis would be useful to test whether or not the per-
manent income hypothesis is walid without specifying the permanent component.

These three exauples preseant cases vhere spectral analysis is a useful
tool in economics. However, they are not intended to indicate that all
hypotheses are appropriate for spectral analysis. Quite the contrary, the
restrictive conditions deweloped in Seztion III jadicate that spectral

analysis is useful for only a few economic hypotheses.




Y. _COWCLUSTONS
Although spectral analysis offers am iateresting way to estimate

some economic hypotheses, it does not appesr to be ganerelly useful for
economic problems as a whwle. First, the hypothesis vader inwestigatioa
sust bave a reascnable interpretation ia the frequency domsin. Second,
hypotheses that indicate substantial differemce in behavior across fre-
quencies may be amenable to sp_ctrui analysis. This is even more true
if the frequency bands of interest explain only a smll fraction of the
total variance in the time series.

In addition to the theozretical restrictisoas, several practical
elements limit the usefults~s of spectral ar=lysis. First, large data
sets are generally requied in order to make adequate estimetes cf the
spectrum. Second, the lack of summary statistics often makes spectral
analysis difficult to interpret. Third, spectral techniques are probably
limited for the most part to univariate and bivariate models, with some
possibility of extending to trivariate models. Therefore, many economic
hypotheses are precluded from estimation in the frequency domein just
because iney cannot be represented as z simple two or three variable
model.

One advantage to using spectral analysis is that the time series is
broken down into individual frequency components, which can themselves
be studied independently or together. In covariance analysis (and in
regression analysis) the contributions of the different frequencies are
all lumped together. However, this very advantage of spectral analysis

is also its nemesis, for it is coafusing to simultaneously exsmine and
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evaluste the large number of frequency points.l Por applications in
economics, the estimates shouid be studied in groups (or frequcacy bands).
The user should avoid both general summary statistics of the entire
npectru-? (unless, of course, the estimates lend themselves to that type
of meagsure) and frequency by frequency analysis of the sprectrum (which
way he of use in physical science applicacions). Also, in light of the
large number of estimates, the user should attempt to evaluate the results
in the framework of one or several different hypotheses, instead of merely
presenting the various spectra. This is particularly true for the phase
angle in cross or multivariate spectral analysis, for the phase angle

has little meaning unless placed in the framework of some theory.

One aspect of the advantage of frequency domain analysis is the
symmetric considerat.on given to both lags and leads between two series.
For example, suppose that the low frequency components of x(t) lead the
low frequancy components of y(t) and that the high frequency compomcnts
of x(t) lag the high frequency components of y(t). By its very nature,
spectral analysis separates out these different effects, whereas time
domain analysis may confuse these two distinct effects. That is, re-
gression coefficients in time domain analysis lump together the effects

of different frequencies. Therefore, it may be very difficult to sort

*It is for this reason that inference is sn difficult in spectral
analysis. While the meaning of a confidence interval for a point esti-
mate is clear, the meaning of a confidence interval for a function is
not. Therefore, since the spectrum is a function of frequency, confi-
dence bands cannot be used for the spectrun. Cne possible approach is
to prescribe a loss function and to integrate the losses over all fre-
quencies. This would yield a scalar loss rather than a vector of losses.

2Covariance and/or regression estimates provide such summaries.
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out both lezis and lags in the time domain representation. Alternatively,
consider the following inventory problem. Suppose that firms effectively
anticipate seasonal fluctuations in demand with their inventories but do
not effectiveiy anticipate cyclical or random movements in demand. Then,
for seasonal frequencies inventories will lead sales while sales will lead
inventories for nonseasonal fraquencies. Speciral analysis will sort out
this relation while the time domain results may not allow the analyst to
distinguish these separate effects.

1£ used properly, spectral analysis can be a useful tool in economics.
The real obstacle to the use of spectra lies not in the technical end (e.g.,

lag or spectral windows, truncation points, etc.) but in the interpretation

of the spectral estimates,

PR
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